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Abstract

We propose a stochastic optimization framework to perform water management in cooling-
constrained power plants. The approach determines optimal set-points to maximize power output
in the presence of uncertain weather conditions and water intake constraints. Weather uncertainty
is quantified in the form of ensembles using the state-of-the-art numerical weather prediction
model WRF. The framework enables us to handle first-principles black-box simulation models
and to construct empirical distributions from limited samples obtained from WRF. Using these
capabilities, we investigate the effects of cooling capacity constraints and weather conditions on
generation capacity. In a pulverized coal power plant study we have found that weather fluc-
tuations make the maximum plant output vary in the range of 5-10% of the nominal capacity in
intraday operations. In addition, we have found that stochastic optimization can lead to daily
capacity gains of as much as 245 MWh over current practice and enables more robust bidding
procedures. We demonstrate that the framework is computationally feasible.

Keywords: stochastic optimization, power plants, weather forecasting, uncertainty, water con-
straints.

1 Introduction

The U.S. geological survey estimates that thermoelectric generation accounts for approximately 136,000
million gallons per day of fresh water withdrawals, ranking only slightly behind agricultural irriga-
tion as the largest source of freshwater withdrawals in the United States [10]. In base-load power
plants (i.e., coal and nuclear) huge amounts of water are lost to the environment in the cooling tow-
ers as a result of evaporation. A 500 MW coal-fired power plant that employs once-through cooling
can use more than 10 million gallons per hour of water for cooling and other process requirements.
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The latest forecast estimates of the Energy Information Administration indicate that U.S. coal-fired
generating capacity will grow from approximately 305 GW in 2004 to 453 GW in 2030. This growth
is a concern because of decreasing fresh water levels and the increasing frequency and severity of
drought conditions [2, 1].

Water consumption in power plants is intimately related to weather conditions such as ambient
temperature and humidity because these conditions affect the capacity of the cooling towers. For
instance, Independent System Operators (ISOs) normally represent plant capacity as a function of
ambient temperature in clearing procedures. Unfavorable weather conditions can force power plants
to drop their power outputs or even to fully shut down, thus limiting their participation in electric-
ity markets. Consequently, weather conditions can have a strong effect on market prices and grid
reliability particularly if the plant is located in an area with significant transmission congestion [8].
Reduced water availability and increasing environmental regulation suggest that a more restricted
water intake will be enforced in power plants in order to ensure long-term availability. This will
force cooling systems to operate closer to their maximum capacity and will make them highly sensi-
tive to weather conditions. Consequently, quantifying the uncertainty of the ambient conditions and
modifying operations in real time will become increasingly important.

Stochastic optimization has been widely used to coordinate generation at central grid levels
[24, 25, 5, 7]. Studies at the power plant level have been focused mostly on determining optimal
bidding strategies [17]. These studies, however, neglect detailed physical limitations of the power
plant. Recently, a stochastic optimization approach has been proposed to minimize water consump-
tion in power plants [22, 21]. Here, the authors determine optimal operating conditions (set-points
for the control system) for a pulverized coal power plant that minimize water consumption under
fluctuations of load and seasonal ambient conditions. Empirical distributions for ambient tempera-
ture and relative humidity were constructed by using historical weather data.

In this work, we use the numerical weather prediction system WRF to obtain forecast and uncer-
tainty information [23, 7]. This enables us to obtain physical representations of uncertainty and to
investigate their size, shape, and accuracy. We use a specialized resolution targeting scheme in WRF
to enable fine resolutions at the location of the power plant. This approach has been used in diverse
studies to obtain weather information affecting energy system performance [27, 6]. We present a
detailed case study integrating uncertainty quantification with WRF, stochastic optimization, and a
detailed power plant first-principles model to investigate computational feasibility, effects of weather,
and uncertainty levels on plant performance and to evaluate potential over the state of the art. To the
best of our knowledge, this is the first study that integrates physical weather and power plant mod-
els. Our study demonstrates that stochastic optimization can yield savings in daily plant capacity of
more than 245 MWh over current practice. In addition, this approach enables more robust bidding
procedures.

We use the BONUS solver, which implements a reweighting-based algorithm, to solve the as-
sociated nonlinear stochastic optimization problem [19]. We argue that reweighting is a powerful
paradigm to handle black-box simulation models because it enables the construction of empirical
distributions of the cost function off-line that can be updated on-line along the search. This avoids
the need to perform simulations on-line, hence, it dramatically decreases computational times and
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ultimately enables feasible industrial implementations.
The paper is structured as follows. In Section 2 we present a high-level description of power plant

operations and effects of weather and water intake constraints. In Section 3 we present a stochastic
optimization formulation and the proposed solution strategy. In Section 4 we describe the weather
forecasting system WRF and the procedure used to compute physical uncertainty representations in
the form of ensembles. In Section 5 we present the integrative case study. In Section 6 we provide
concluding remarks and briefly discuss future work.

2 Power Plant Operations

In this section we present a high-level description of cooling-constrained power plants and explain
the effect of weather conditions and water constraints on generation capacity.

A typical interface between a typical power plant equipped with a wet recirculating cooling sys-
tem is sketched in Figure 1. For a detailed description of power plant operations and other types of
cooling systems we refer the reader to [3]. The power plant burns fuel to generate steam that is used
to generate power in a turbine train. The steam coming out of the turbines must be condensed before
being recirculated to the power plant. This steam has a thermal load at time t denoted by Qp(t).

The thermal load depends on the total amount of power produced by the plant P (t), which im-
plicitly sets the amount of steam to be condensed. We will denote as xp(t) the plant output variables
of interest in this case given by P (t) and Qp(t). The operational degrees of freedom of the power
plant will be denoted as up(t). This can be the set-points, fuel flow rate, stoichiometric ratios, and so
on. We will assume that the plant model does not exhibit coupling in time (i.e., it is at steady-state).
Consequently, we will remove the explicit dependence in time from the nomenclature. We have a
plant model in the following abstract form:

0 = fp(xp, up). (2.1)

The cooling system capacity is given by Qc. This is part of the cooling system states denoted by
xc. The cooling system capacity depends on the weather conditions (relative humidity and dry bulb
temperature) denoted as w. The operational degrees of freedom of the cooling system are denoted as
uc. The cooling system model has the following form:

0 = fc(xc, uc, w). (2.2)

At steady-state, the cooling system capacity should match that required by the power plant. This
condition is given by the abstract condenser model of the form

0 = g(xp, xc). (2.3)

The capacity of the cooling system can be denoted in implicit form as Qc(uc, w). The maximum ca-
pacity by design under ideal weather conditions will be defined as Qmax

c . This maximum capacity
is constrained by physical limitations of the system such as diameter, height, flooding conditions,
and pumping capacity, by environmental regulations, and by drought. These limitations typically
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manifest as water constraints, which limit the amount of fresh water (make-up water) that the cool-
ing system can use to provide cooling capacity. For any other nonideal weather conditions we have
Qc(uc, w) ≤ Qmax

c . The feasible operating region for the cooling system is given by the set of inequal-
ity constraints,

0 ≤ hc(xc, uc, w), (2.4)

which depend on the weather conditions and design specifications. This set of constraints can also
include bounds on states and decision variables for the cooling system. We denote the feasible oper-
ating region for the power plant as an inequality system of the form

0 ≤ hp(xp, up, w). (2.5)

This set of constraints includes bounds on states and decision variables for the plant. The entire
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Figure 1: Schematic representation of the interface between the generation and cooling systems.

model coupling the power plant and the cooling system can be written as follows:

0 = f(x, u, w) (2.6a)

0 ≤ h(x, u, w). (2.6b)

For the power plant, the maximum power output under design specifications (nominal capacity)
is given by Pmax with corresponding cooling demand Qmax

p . If the available cooling capacity sat-
isfies Qc(uc, w) ≥ Qmax

p , then the power output is constrained only by the plant-side design spec-
ifications and is given by Pmax. If the cooling capacity is constrained Qc(uc, w) ≤ Qmax

p , then
Pmax = Pmax(Qc(uc, w) and, in order to have feasible operation, we need P ≤ Pmax(Qc(uc, w))

and Q ≤ Qmax
p (Qc(uc, w)). In other words, the maximum capacity of the power plant is an implicit

function of the available cooling capacity. In this case, the power plant is operationally constrained
by the prevailing weather conditions because the cooling capacity is constrained in turn by weather
and design/regulation specifications. Therefore, there exists a feasibility threshold valueQmax

p where
the system moves from being design (physically) constrained to cooling constrained. We note that
the relative influence of the weather conditions depends on the design of the plant. In particular, it
depends on the distance of the optimal cooling capacity Q∗c(w) from the feasibility threshold Qmax

p .

4



The thresholds for two different plant designsQmax
p , Q̄max

p with maximum power outputsPmax, P̄max

are sketched in Figure 2. The sensitivity of the power plant output to weather below the threshold
is related to the design conditions of the cooling and condenser systems. For instance, the cooling
system for P̄max is less sensitive to the weather conditions than is the cooling system for Q̄max

p . This
fact is of importance because it implies that a lack of sensitivity of the power plant output to weather
conditions can occur if the plant is design constrained instead of cooling constrained. An interesting
question is how to design or retrofit, in a cost-optimal manner, the power plant and cooling system
in order to make the threshold Qmax

p as high as possible and to reduce sensitivity to weather condi-
tions. Doing so would require robust optimization and flexibility analysis techniques. In this study,
we will consider fixed design conditions for the power plant and cooling system and consider con-
straints only on operating conditions. We also note that weather also affects the boiler efficiency, since
ambient air is used in the combustion chamber. However, we do not consider this case here.

In this study, we will assume that the main operational objective in the power plant is to maximize
plant output power at prevailing weather conditions. To achieve this objective, one can adjust the set-
points represented by u. For known weather conditions, the optimal set-points can be determined by
solving a nonlinear optimization problem of the form

max
u

P (x, u, w) (2.7a)

s.t. 0 = f(x, u, w) (2.7b)

0 ≤ h(x, u, w). (2.7c)

We note that the set-points on the plant side can be manipulated to minimize the cooling demand of
the plant in order to avoid the combined effect of weather and water constraints. In other words, if
the set-points are not adapted to the prevailing weather conditions, the power plant output will be
constrained by the water intake constraints, and the power output will decrease.

The steady-state modeling assumption implies that the distance between time steps is sufficiently
long such that there exists a low-level control system capable of making the dynamic transition. This
assumption is justified for slow base-load plants with time constants on the order of hours.

3 Stochastic Optimization

In this section we present a stochastic optimization formulation and solution strategy to mitigate
effects of weather on power plant capacity.

3.1 Formulation

The objective of the stochastic formulation is to find set-points for the current time t, denoted by uHN ,
that maximize the expected value of the plant capacity. We assume that the weather conditions w are
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Figure 2: Effect of weather on maximum power plant capacity.

random variables.

max
u

E
w

[P (x(w), u, w)] (3.8a)

s.t. 0 = f(x(w), u, w), w ∈ Ω (3.8b)

0 ≤ h(x(w), u, w), w ∈ Ω. (3.8c)

Here, Ew[·] denotes the expected value with respect to w. In this formulation the constraints are
assumed to hold almost surely. We denote the optimal value of this problem as ϕ(uHN ), where the
subscriptHN indicates the here-and-now nature of the solution uHN . In other words, a single (scenario
independent) set of implementable set-points is sought. In practical terms, this set-point ensures the
feasibility of the model and constraints for each realization of the weather conditions w ∈ Ω. We note
that the state variables are scenario-dependent and thus represented as x(w). We also note that since
the model is assumed to be in steady-state, the problems at different time instants are decoupled.
Consequently, we can solve the above problem over an horizon t, ..., t + T to determine the cost
functions ϕ(uHN (τ)), τ = t, ..., t+ T

Related to the here-and-now optimization problem (3.8) is the deterministic problem:

max
u

P (x, u,E[w]) (3.9a)

s.t. 0 = f(x, u,E[w]) (3.9b)

0 ≤ h(x, u,E[w]). (3.9c)

This problem uses the expected value of the weather conditions E[w] to determine the optimal set-
points, which we denote as uD. If we fix the set-points uD and evaluate the cost function for each
scenario w ∈ Ω, we can obtain ϕD(uD, w) and compute the deterministic cost function

ϕ(uD) = E
w

[ϕD(uD, w)]. (3.10)

From [24] we have that

ϕ(uHN ) ≥ ϕ(uD). (3.11)
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Consequently, the stochastic optimization solution will always give better performance than will the
deterministic counterpart (as long as the global maximum can be computed). The improvement
(normally called the value of the stochastic solution), however, is problem dependent and thus can
be determined only empirically. In the power plant context this value is determined by the design
specifications and the ambient conditions at the particular climate and season. In this work, we seek
to determine this value for a realistic setting.

We also seek to determine the effect of using weather forecasting to optimize operating conditions
in real time (intra day). To this end, we consider the solution of the deterministic problem using day-
average weather conditions, which we represent by w̄. This gives a single fixed set-point for the entire
time horizon t, ..., t + T denoted by uS and associated cost functions ϕ(uS(τ)), τ = t, ..., t + T .
The cost improvement with respect to the deterministic cost ϕ(uD) gives a measure of the impact of
using weather forecast information to perform intra day optimization of operating conditions. This
is important because, in a typical market setting, it is necessary to determine the policy of set-points
over the entire horizon t, ..., t+T in advance (normally within 24 hours) in order to determine a plant
capacity profile to be bid into the market. In other words, inaccurate estimation of weather conditions
can ultimately affect plant profit as well as grid reliability and market prices because it can lead to
under- and overestimation of capacity.

3.2 Solution

We can write the stochastic optimization problem (3.8) in the following abstract form:

min
u∈U

V (u) := E
w

[ϕ(u,w)] , (3.12)

Here, U is the box set U := {u |u ≤ u ≤ u}, where u and u are lower and upper bounds, respectively.
We can use this representation if we assume inequality constraints only in u and if we assume that
the implicit solution of the black-box model f(x, u, w) = 0 can be represented as a smooth function of
u and w, x(u,w).

The random vector w has a prior distribution P(w). We note that the cost ϕ(u,w) also has an
associated posterior distribution P(ϕ(u,w)) from which we seek to minimize its expected value. The
KKT conditions of this problem are

0 = ∇uV (u) + ν − ν (3.13a)

0 ≤ ν ⊥ (u− u) ≥ 0 (3.13b)

0 ≤ ν ⊥ (u− u) ≥ 0. (3.13c)

Here, ν and nu are multipliers for upper and lower bounds, respectively. To solve the stochastic
optimization problem, one can follow exterior or interior sampling approaches. In exterior sampling
approaches (also known as sample-average approximation approaches) Nsam samples are drawn
from the prior distribution P(w) to convert the problem (3.14) into a deterministic counterpart [18] of
the form

min
u∈U

Ṽ (u) :=
1

Nsam

Nsam∑
j=1

[ϕ(u,wj)] . (3.14)
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Inference is performed a posteriori to check the quality of the solution because the cost Ṽ (u) is an
empirical approximation of V (u) [15]. One of the issues with the exterior sampling approach is that
the number of samples normally must be overestimated in order to guarantee an appropriate solution
accuracy. This is an issue of concern since, in many applications, only a few samples are available and
because the complexity of the deterministic counterpart increases with the number of samples. For
instance, sampling of the prior distribution might require the solution of a computationally intensive
model (e.g., a weather forecasting model); or, if the prior is a high-dimensional normal, sampling
will require the factorization of a large and dense covariance matrix (cubic complexity). In [7], the
authors proposed a reweighting scheme to estimate additional samples from the limited number of
samples obtained from a weather forecasting system.

Interior sampling approaches estimate the cost and derivative information internally along the
search. One of the key advantages is that flexibility can be used to minimize the number of samples
needed by identifying promising solutions early in the search. This concept was implemented by
Sahin and Diwekar in the BONUS solver [19]. Here, the authors propose a reweighting scheme to
estimate directly the posterior distribution of the cost P(ϕ(u,w)) and associated expected value and
derivative information. This is different from the reweighting scheme presented in [7], which is
applied to the prior distribution of the random variables.

Reweighting can also be interpreted as an importance sampling approach [11]. Using this obser-
vation, one can estimate the statistical properties of the cost posterior indirectly by updating design
distributions of the random and input variables and the cost distribution generated off-line (before
running the optimization search). This is particularly useful in a simulation-based approach where
the evaluation of the cost function requires the simulation of a black-box model. The approach con-
trasts with traditional sampling algorithms that simulate the model along the search to estimate the
expected cost and gradient information. Consequently, the internal reweighting approach can save
large amounts of on-line computational time. In addition, reweighting enables the use of highly com-
plex models (e.g., using internal convergence loops) and black-box legacy codes. Further, the use
of reweighting enable prior distributions to be created using samples from another distribution that
is more expensive to sample. Because of these reasons, we use the internal reweighting approach
implemented in the BONUS solver [19].

A detailed explanation of the procedure can be found in [19]. The procedure involves the follow-
ing general steps:

1. Off-Line Computations. Draw independently distributed samples j = 1, ..., Nsam for random
variables ŵj and inputs ûj covering the convex set U . Use these samples to generate the design
prior density Pd(u,w) using kernel density estimation (KDE). Evaluate the cost function for
each sample j = 1, ..., Nsam to obtain the cost function response ϕ(ûj , ŵj), and estimate the
design posterior distribution Pd

(ϕ(u,w)) using KDE.

2. On-Line Computations. Given the prior distribution for the random variables P(w) and the de-
sign distributions Pd(u,w), Pd

(ϕ(u,w)) and cost values ϕ(ûj , ŵj), j = 1, ..., Nsam, initialize
decision variables uk.
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• 2.1.Optimality Check. At iteration k, and using the current iterate of decision variables uk, define
a narrow normal distribution around this point, and draw samples ukj from it. Draw samples
wk
j from the available distribution. Use samples to generate Pk(u,w) using KDE. Estimate the

cost function using the reweighting formula:

Ṽ (uk) ≈ Ew[ϕ(uk, w)] ≈
Nsam∑
j=1

ωk
jϕ(ûj , ŵj), (3.15)

where the weights ωk
j are obtained from

ωk
j =

Pk(uk
j ,w

k
j )

Pd(ûj ,ŵj)∑Nsam
i=1

Pk(uk
i ,w

k
i )

Pd(ûi,ŵi)

(3.16)

and satisfy
∑k

j=1 ω
k
j = 1. Perturb the decision variables uk + δuk to estimate the perturbed

cost Ṽ (uk + δuk) using reweighting to estimate the gradient ∇uṼ (uk). If the KKT residual
‖∇uṼ (u) + ν − ν‖ and complementarity products are sufficiently small, terminate. Otherwise,
go to step 2.2.

• 2.2. SQP Step Computation. Use the gradient to compute the Hessian approximation Hk us-
ing the BFGS formula, and compute step ∆u for decision variables by solving the quadratic
program (QP):

min∆u ∇uṼ (uk)T∆u+ ∆uTHk∆u, s.t. uk + ∆u ∈ U . (3.17)

Cut the step if necessary to obtain a new iterate uk+1 = uk +α∆u with α ∈ (0, 1]. Go to step 2.1.

As can be seen, the computation of the cost at each iteration requires only the off-line values
ϕ(ûj , ŵj); the black-box model is never run along the search. This is a key feature in real-time appli-
cations where the stochastic optimization problem must be solved at different instances in time. If
higher moments are needed to estimate, for instance, variance of the cost then the design posterior
distribution can be used. We also note that reweighting can be used to compute confidence inter-
vals for the gradient and thus have a more robust termination criterion. This comes, however, at a
much higher computational cost because full problems must be solved with different realizations of
uncertainty in order to compute the variance of the cost, at solutions satisfying the KKT conditions
[15, 12]. In our approach, we terminate when the norm of the KKT residual is sufficiently small. This
procedure will converge as long as the QP step obtained with the estimate∇uṼ (uk) provides a direc-
tion of sufficient decrease on the actual cost V (uk). This is normally observed in practice [4], and the
chances are enhanced if sampling is performed along the search, as we do here [16]. There is no gen-
eral guarantee, however, that the solution is obtained unless an explicit inference task is performed.
In our case, we also perform a cheap a posteriori validation by computing the value of the stochastic
solution to determine whether the procedure is improving the cost over the deterministic solution.

One of the limitations of this approach is that complexity increases with the number of degrees
of freedom u and random variables w because the number of samples needed to cover the set U and
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the uncertain space increases. Convergence is normally exponential in the number of samples. Note,
however, that this complexity is reflected in off-line computations only and can be reduced in practice
by using variance reduction techniques such as Hammersley sequence sampling or Latin hypercube
sampling [9]. The number of samples needed to estimate the distributions along the search by using
KDE is problem dependent. We also note that the complexity of the QP increases cubically with the
number of degrees of freedom since the QP it is nearly dense.

4 Weather Forecasting and Uncertainty Quantification

We describe the procedures used to compute real-time forecasts and uncertainty information for am-
bient temperature and humidity using the numerical weather prediction (NWP) model WRF. We
present details of the ensemble initialization and restarting procedures capable of providing frequent
forecast updates as needed in real-time power plant operations.

The WRF model [23] is a state-of-the-art numerical weather prediction system designed to serve
both operational forecasting and atmospheric research needs. WRF is the result of a multi-agency
and university effort to build a highly parallelizable code that can run across scales ranging from
large-eddy to global simulations. WRF has a comprehensive description of the atmospheric physics
that includes cloud parameterization, land-surface models, atmosphere-ocean coupling, and broad
radiation models. The terrain resolution can go up to 30 seconds of a degree (less than 1 km2).
The discretization of the underlying nonlinear partial-differential equation system over a 3-D field
typically leads to a state dimensionality of O(108 − 1010). Consequently, the WRF model is computa-
tionally intensive, and special domain targeting techniques and computational resources are needed
to enable computational feasibility [7]. We currently run an implementation of the WRF system at
Argonne National Laboratory. This implementation can be used to generate validated weather data
and uncertainty information for energy optimization studies [27, 26, 7].

To initialize the NWP simulations, we use reanalyzed fields, that is, simulated atmospheric states
reconciled with observations (the entire atmospheric state space is required by the model) as ini-
tial conditions, since only a small subset of the state space is available through measurement at any
given time [13]. The reanalyzed states are generated from an internal data assimilation procedure. In
particular, we use the North American Regional Reanalysis (NARR) data set that covers the North
American continent (160W-20W; 10N-80N) with a resolution of 10 minutes of a degree, 29 pressure
levels (1000-100 hPa, excluding the surface), every three hours from 1979 until present. We use an
ensemble of realizations to represent uncertainty in the initial (random) wind field and propagate
it through the WRF nonlinear model. The initial ensemble is obtained by sampling from an empir-
ical distribution, a procedure similar to the National Centers for Environmental Prediction (NCEP)
method [14]. In the following subsections we describe in more detail the procedures needed for
generating the forecast and its uncertainty.
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4.1 Ensemble Initialization

In a normal operational mode, the NWP system evolves a given state from an initial time t0 (current
time) to a final time tF . The initial state is produced from past simulations and reanalysis fields.
Because of observation sparseness in the atmospheric field and the incomplete numerical representa-
tion of its dynamics, the initial states are not known exactly and can be represented only statistically.
Therefore, we use a distribution of the initial conditions to describe the confidence in the knowledge
of the initial state of the atmosphere. We assume a normal distribution of the uncertainty field of the
initial state, a typical assumption in weather forecasting. The distribution is centered on the NARR
field at the initial time, the most accurate information available. In other words, the expectation is
exactly the NARR solution. The second statistical moment of the distribution described by the covari-
ance matrix V is approximated by the sample variance or pointwise uncertainty and its correlation,
C. The initial NS-member ensemble field xt0s := xs(t0), i ∈ {1 . . . NS}, is sampled from N (xNARR,V):

xt0s = xNARR + V
1
2 ξs , ξs ∼ N (0, I) , s ∈ {1 . . . NS} , (4.18)

where C = Vij/
√

ViiVjj and Vii is the variance of variable i. This is equivalent to perturbing the
NARR field withN (0,V). That is, xs = xNARR +N (0,V). We note that the correlation matrix is huge
(square of the discretized number of states in a 3-D field) and thus cannot be formed and stored. In
what follows, we describe the procedure used to estimate the state correlation matrix.

4.2 Estimation of the Correlation Matrix

In weather models the correlation structure typically is localized in space. Therefore, in creating the
initial ensemble one needs to estimate the spatial scales associated with each variable. To obtain
these spatial scales, we build correlation matrices of the forecast errors using the WRF model. These
forecast errors are estimated by using the NCEP method [14], which is based on starting several sim-
ulations staggered in time in such a way that, at any time, two forecasts are available. In particular,
we run a month of day-long simulations started every twelve hours so that every twelve hours we
have two forecasts, one started one day before and one started half-a-day before. The differences
between two staggered simulations is denoted as dij ∈ RN×(2×30days), that is, the difference at the ith
point in space between the jth pair of forecasts, where N is the number of points in space multiplied
by the number of variables of interest. We can then define εs as the ith row, each of which correspond
to the deviations for a single point in space. Therefore, the covariance matrix can be approximated
by V ≈ ddT. Calculating and storing the entire covariance matrix are computationally intractable.
Consequently, we describe the correlation distance at each vertical level and for each variable by two
parameters representing the East-West and North-South directions. This approach captures the Cori-
olis effect and the Earth rotation, as well as faster and larger-scale winds in the upper atmosphere.
We assume that correlations and winds are roughly similar in nature across the continental U.S. This
process is repeated in the vertical direction. To create the perturbations from these length scales, we
take a normally distributed noisy field and apply Gaussian filters in each direction with appropriate
length scales to obtain the same effect as in (4.18).
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4.3 Ensemble Propagation through the WRF Model

The initial state distribution is evolved through the NWP model dynamics. The resulting trajectories
can then be assembled to obtain an approximation of the forecast covariance matrix:

xtFs =Mt0→tF

(
xt0s
)

+ ηs(t) , s ∈ {1 . . . NS} , (4.19)

where xt0s ∼ N
(
xNARR,V

t0
)
, ηs ∼ N (0,Q), and Mt0→tF (•) represents the evolution of the initial

condition through the WRF model from time t0 to time tF . The initial condition is perturbed by the
additive noise η that accounts for the various error sources during the model evolution. An analysis
of the covariance propagation through the model is given in [7].

In this study, we assume that the numerical model (WRF) is perfect, that is, η ≡ 0, and thus
given the exact real initial conditions, the model produces error-free forecasts. For long prediction
windows, this is a strong assumption. In this study, however, we restrict the forecast windows to no
longer than one day ahead, thus making this assumption reasonable.

Relative humidity (RH) is typically a derived quantity or a diagnostic variable in the NWP model,
which means it is not modeled directly. RH is computed based on air density, temperature, and vapor
pressure [23]. In particular, the water mixing ratio is available as a standard WRF output; then the
RH is obtained as the ratio between the water mixing ratio and the saturation mixing ratios, which
are based on local temperature and pressure.

5 Integration Study

We present a numerical study integrating stochastic optimization and weather uncertainty quantifi-
cation using detailed physics models for weather and power plant simulation. The framework is
sketched in Figure 3. We first demonstrate that stochastic optimization can yield significant improve-
ments over deterministic operating policies. In addition, we discuss computational feasibility of the
proposed framework.

5.1 Plant Description

A general scheme of a pulverized coal power plant is shown in Figure 4. A more detailed descrip-
tion can be found in [22, 21, 20] and the references therein. Powdered coal is blown into the boiler
combustion chamber, and the hot gases and heat produced by the combustion of coal are used to
produce steam within the tubes inside the boiler. High pressure steam is fed into a train of high pres-
sure (HP), intermediate pressure (IP) and low pressure (LP) turbines where it does mechanical work
causing the turbine shaft to rotate at high speed. The steam returns to the boiler after the first pass
through HP turbines, where it is reheated before being fed to the IP turbines. After passing through
the turbine train, the steam is cooled to condensation and returned to the boiler while being pre-
heated with steam extracted from the turbines in eight stages. A flue gas desulfurization (FGD) unit
is attached to the boiler effluent to remove the SO2 before it is released to the atmosphere. This FGD
unit employs limestone and oxygen in a reactive absorber to react with SO2 and produce calcium
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Figure 3: Integration framework of weather uncertainty quantification.

sulfate (gypsum). Limestone is fed to the unit as slurry, and the resulting sulfate is removed from the
absorber as suspension water. In order to compensate for losses by evaporative cooling and water
employed in the flue gas treatment units (ash removal and flue gas desulfurization) large makeup
streams are required in the cooling cycle. As we have discussed, the amount of make-up water can
become constrained under different scenarios, thus limiting capacity.

The model is a supercritical steady-state flow sheet without carbon capture designed to gener-
ate 700 MW of electricity. The process performance parameters (generation, efficiency, emission and
water consumption) are calculated with the process simulator model Aspen Plus which allows the
use of available unit operation models, property data bases and simulation algorithms. The specifi-
cations of the Aspen model are summarized in Table 1. A sequential modular approach was used to
simulate the model.

Accurate estimation of the water intake strongly depends on the cooling tower model used. In
this work, an equilibrium-based model for the cooling tower was used to estimate the evaporation
rates [22]. The model comprises two flash units and one heat exchanger. One of the flashes is set to
be adiabatic and is employed to calculate the wet bulb temperature from dry bulb temperature and
relative humidity. The second flash is coupled with the heat exchanger and has no liquid outlet. A
design specification ensures that heat provided to the flash equals the condenser cooling requirement.
Additionally, a set of design specification and calculators determine the cold water temperature,
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Figure 4: Schematic representation of coal-fired plant.

circulating water flow rate, and air flow rate for a constant volume, forced-drift cooling tower. We
enforced a constraint on the maximum water intake of 2 × 106 lb/hr. This represents the nominal
consumption under average atmospheric conditions: of 59 oF and 60% relative humidity.

To determine the plant operational and design parameters that influence water consumption the
most and therefore the maximum generation, we performed a partial rank correlation coefficients
(PRCC) analysis. Re-heater temperature, air excess to the boiler, water contents to for the FGD slurry
and pressure drops at HP turbines 1 and 2 were chosen as decision variables.

5.2 Validation of Weather Forecast

In Figure 5 we present average and 30 ensemble profiles for the dry bulb temperature and relative
humidity for a day, respectively, in a random location in the Midwest region of the U.S. for June 1,
2006. The day-long profile is forecast at the location of a meteorological tower located near Chicago,
IL (41◦42′04′′, 87◦59′42′′). The crossed dots show the actual temperatures and humidity observed at
the closest meteorological station as measured by the instruments mounted on the weather tower.
The envelope surrounding the ensembles is the 95% confidence region. Time zero represents 6 a.m.
central time.

One can see that the projection for a day ahead is reasonably accurate from the WRF model, cap-
turing well the trend and sensor readings. Temperature varies significantly throughout the day in
the range of 15-26oC, while the relative humidity varies in the range of 20-90%. Humidity is much
higher at night, whereas temperature is much higher during the day, the variables are anticorrelated.
The temperature and RH uncertainties are the result of different NWP model forecasts for the same

14



Table 1: Aspen model specifications.

Units Number of Units

Sections 3
Boiler 1

Steam Cycle 1
Cooling Water 1
Total Streams 178
Mass Streams 120

Energy Streams 37
Work Streams 21

Total ASPEN Blocks 128
Unit Operations 115

Heat Mixers/Splitters 10
Work Mixers/Splitters 3

Calculator Blocks 25
Design Specifications 31
Convergence Blocks 31

prediction window. While the temperature is relatively well modeled, the RH is the result of the
moisture transport in the atmosphere and complex physical interactions that lead to phase changes.
Therefore, as expected, we observed a relatively wider uncertainty estimate for RH and a fanning
effect toward the end of the forecast window. We also note that while uncertainty for temperature
projections has been discussed in other studies, we were unable to find projected uncertainty esti-
mates for RH in the literature. These estimates are a contribution of our work.

The uncertainty envelopes for the ambient temperature are narrow. The uncertainty envelope for
the relative humidity, on the other hand, is wide and can be as large as 30-40% toward the end of the
day. Both envelopes follow complex shapes due to the nonlinearity of the weather prediction model
and current meteorological conditions. Toward the end of the day, the mean forecast does not predict
well the shape of the humidity profile, but the uncertainty envelope covers this region reasonably
well. This indicates the additional complexity in forecasting humidity. This also reflects the fact that
the uncertainty envelope is unable to fully cover the sensor readings at all times.

We fitted the ambient temperature and relative humidity WRF ensembles to a log-normal and
uniform distributions, respectively. These are illustrated in Figure 6 and 7. These were used to
generate the design distribution Pd(u,w) and corresponding cost posterior Pd

(ϕ(u,w)).

5.3 Maximum Power Performance

To demonstrate the economic benefits of stochastic optimization over current practice, we performed
extensive simulations using three settings. In the first setting, we solved the here-and-now stochastic
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Figure 5: Forecast and ensemble profiles for dry bulb temperature and relative humidity in Midwest
U.S. for June 1, 2006.
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Figure 6: Fit of ambient temperature WRF ensembles to log normal distribution.

optimization problem to maximize the expected value of power during a timeframe of 24 hours with
time steps of one hour. The WRF ensemble information was used to solve the problem. This profile
is labeled as ”Stochastic”. In the second setting, we solved the deterministic problem using the mean
forecast obtained from WRF and we computed the expected value of the maximum power using the
ensembles from WRF. The maximum power profile is labeled ”Deterministic b)”. In the third setting,
we compute day-average conditions for temperature and humidity and leave the operating condi-
tions fixed throughout the day. The expected value of the maximum power was again computed
from the WRF ensembles. The maximum power profile is labeled ”Deterministic a)”. Figure 8 shows
the result of optimization. We have the following findings:

• From Deterministic a) we can observe that the power profile does vary with the weather condi-
tions throughout the day. Specifically, the power levels vary from 715 to 665 MW, which repre-
sents 7% of the base load of 700 MW. Consequently, the set-points must be adjusted throughout
the day to mitigate the effects of weather and water constraints.

• High power is obtained at night when ambient temperature is lower, even if humidity is high.
Low power is obtained around noon when temperature is high, even if humidity is low. This
indicates that temperature dominates the cooling capacity. In addition, it indicates that the
plant becomes constrained by cooling capacity at high temperatures since we have imposed a
constraint on water intake.

• From Deterministic a) and b) we can see that adjusting operating conditions according to the
mean forecast can increase the maximum power output. The total power output for a) is 16,675
MWh while for b) is 16,823 MWh, a performance gain of 146 MWh.

• Stochastic optimization gives a total power output of 16,922 MWh. This gives a performance
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Figure 7: Fit of relative humidity WRF ensembles to uniform distribution.

gain of 99 MWh over Deterministic b) and 245 MWh over a).

• Stochastic optimization displaces the power output curve but does not fully mitigate the vari-
ability of power throughout the day. In particular, the variability for the stochastic profile is
45 MW. This indicates the strong impact of weather and corroborates the fact that the plant is
constrained by cooling capacity.

• At hour 15 and 23 the stochastic profile is lower than that of Deterministic b). This is because
of the estimation error introduced from the small number of samples. The profiles, however,
indicate that the stochastic optimization solution is consistently better than the deterministic
one, indicating that a small number of samples seem sufficient to obtain accurate solutions.
This, in turn, indicates that the weather uncertainty information is accurate and the reweighting
scheme is efficient in identifying good-quality solutions.

These results indicate that, for a given water intake constraint, power can be maximized by using
stochastic optimization. This also implies that, as water constraints are tightened, it is possible to
maintain high output levels with stochastic optimization, thus reducing water consumption. We also
note that tightening the water intake constraint will increase the sensitivity of the power profile to
weather conditions.

If we project the gain of 245 MWh over a total of 100 days in a year (summer conditions), this
translates into 24.5 GWh that, if paid at a price of $100/MWh, translate into $2,450,000. Of course,
a more rigorous analysis capturing seasonal effects and different constraint scenarios is needed.
The presented analysis, however, provides an order of magnitude of the expected savings through
stochastic optimization. We also note that the results confirm that both the weather uncertainty in-
formation and the proposed solution approach are sufficiently accurate to generate perceivable im-
provements over existing practice.
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We highlight the potential of stochastic optimization in aiding bidding procedures. In particular,
the proposed approach enables a more robust prediction of the expected performance of the plant.
This is important in day-ahead bidding procedures where maximum capacity is an important pa-
rameter needed in market participation. The computed maximum capacity profiles obtained with
stochastic optimization can implicitly minimize economic penalties arising in real-time markets. In
particular, if capacity is overestimated, then the plant owner will have to pay for the unmet gener-
ation at a real-time price which tends to be higher since more more expensive peaking plants are
used in real-time grid operations. On the other hand, if capacity is underestimated, there will be an
opportunity cost if the available surplus cannot be sold in the real-time market.
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Figure 8: Maximum power profiles for stochastic and deterministic approaches.

5.4 Numerical Performance

A single simulation of the Aspen power plant model takes, on average, 10 minutes on a Intel Core 2
Duo processor running at 2 GHz. This time is required for all the loops to converge and satisfy the
design specifications within the simulator. To set-up the initial distributions of the objective function,
we ran 600 scenarios, each requiring a simulation of the Aspen model (10 min). This required as
total time of about 100 hours. We emphasize that this is off-line time. To generate these scenarios, we
sampled the uncertain variable domain (from uniform distributions) considering weather variations
of one week. We also emphasize that we can reuse the design distributions to solve stochastic opti-
mization problems over several days while we can update the design distributions for the next week
as updated weather data is obtained.

The average number of SQP iterations was 7, with a minimum of 2 and a maximum of 16. Each
SQP iteration takes less than a minute. We used 50 different samples at each SQP step. To verify that
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global optimality was achieved, we ran the optimizer from 7 different starting points at each time
step. A total of 1,184 SQP iterations was required for the 24-hours timeframe. Starting from multiple
starting points also enhances the chances of identifying higher quality solutions [16].

A traditional stochastic optimization approach (with no reweighting) would have used 355,200
runs of the ASPEN model to solve the problems over the 24 hour timeframe. That in turn would
have required 59,200 hours of computation (2,400 days). This total number of runs comprises 6 As-
pen model simulations per SQP iteration (one for function evaluation and one for each degree of
freedom to evaluate derivatives). The proposed solution approach with reweighting does not re-
quires on-line model runs. The total on-line time for 1,184 SQP iterations is around 2 hours. This
translates into 99.8% savings in computational load and enables feasibility.
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Figure 9: Simulation domain and resolution for WRF.

The strategy for estimating the uncertainty in weather forecasts is highly parallelizable because
each scenario evolves independently through the numerical weather model WRF, once the initial
scenario ensemble has been generated. The most expensive computational element is the evolution
of each member through the WRF system. We consider a two-level parallel implementation scheme.
The first level is a coarse-grain task division represented by each individual member. A secondary
fine-grained level consists in the parallelization of each individual member. This approach is readily
available because WRF is already parallelized, and this strategy yields a highly scalable solution.

The WRF simulations were carried out on Argonne National Laboratory’s Fusion cluster. This
cluster has 320 nodes each with two Nehalem 2.6 GHz Pentium Xeon and 36 GB of RAM. We consid-
ered three nested domains, the coarsest having a horizontal resolution of 32 by 32 km (#1), and the
finest 2 by 2 km (#3), as illustrated in Figure 9. This targeted domain partition provides an accurate
representation of the target region, which was selected to be the state of Illinois and dramatically
decreases computational complexity. In particular, it avoids the use of fine uniform resolutions over
the entire country, which is the approach used by most providers of forecast information.

For this study, we carried our NWP simulations asynchronously and on a small number of cores.
We estimate, however, that we can compute members for a 24-hour simulation in less than an hour on
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about 400 cores. Consequently, it is feasible to perform rigorous uncertainty quantification tasks with
WRF to aid power plant operations.

6 Conclusions and Future Work

We propose a stochastic optimization framework to perform integrated water and energy manage-
ment in cooling-constrained power plants. The approach integrates detailed physical weather and
power plant simulation models to assess effects of ambient conditions on plant performance. We
have found that the maximum plant capacity can vary in the range of 5-10% of the nominal capac-
ity in intraday operations because of weather variations. In addition, we have found that stochastic
optimization can lead to daily capacity gains of as much as 245 MWh over current practice and en-
ables more robust bidding procedures. Moreover, we have demonstrated that a reweighting scheme
enables computationally feasibility of the approach.

The results open interesting directions for future work. A more extensive study is needed of the
effects of seasonal weather conditions on plant performance and on the accuracy of the weather fore-
casts throughout the year. This will require, however, extensive computational resources to perform
integrated weather forecasting and stochastic optimization. It is also necessary to revisit the internal
reweighting scheme to assess, on the fly, the quality of the solutions using inference techniques. It is
also of interest to study the effects of weather on other plant configurations such as combined cycle
power plants where ambient conditions affect combustion processes. Formulations using dynamic
effects such as ramp constraints must also be developed. This will increase dramatically the complex-
ity of the problem as time decoupling is no longer possible. Finally, it is of interest to study the effect
of risk functions and long-term water reservoir dynamics (e.g., seasonal) on plant performance.
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